
Modeling Guidelines for Code Generation

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Modeling Guidelines for Code Generation
© COPYRIGHT 2010-2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2010 Online only New for Version 1.0 (Release 2010b)
April 2011 Online only Revised for Version 1.1 (Release 2011a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introduction

1
Motivation . 1-2

Block Considerations

2
cgsl_0101: Zero-based indexing . 2-2

cgsl_0102: Evenly spaced breakpoints in lookup
tables . 2-4

cgsl_0103: Precalculated signals and parameters 2-5

Modeling Pattern Considerations

3
cgsl_0201: Eliminate redundant state blocks 3-2

cgsl_0202: Usage of For, While, and For Each
subsystems with vector signals 3-8

cgsl_0204: Vector and bus signals crossing into atomic
subsystems . 3-10

cgsl_0205: Signal handling for multirate models 3-14

iii

cgsl_0206: Data integrity and determinism in
multitasking models . 3-16

Configuration Parameter Considerations

4
cgsl_0301: Prioritization of code generation objectives
for code efficiency . 4-2

cgsl_0302: Diagnostic settings for multirate and
multitasking models . 4-3

iv Contents

1

Introduction

1 Introduction

Motivation
MathWorks intends this document for engineers developing models and
generating code for embedded systems using Model-Based Design with
MathWorks® products. The document focus is on model settings, block usage,
and block parameters that impact simulation behavior or code generation.

This document does not address model style or development processes. For
more information about creating models in a way that improves consistency,
clarity, and readability, see the “MathWorks Automotive Advisory Board
Control Algorithm Modeling Guidelines Using MATLAB®, Simulink®, and
Stateflow®”. Development process guidance and additional information for
specific standards is available with the IEC Certification Kit (for IEC 61508
and ISO 26262) and DO Qualification Kit (for DO-178B) products.

Disclaimer While adhering to the recommendations in this document will
reduce the risk that an error is introduced during development and not be
detected, it is not a guarantee that the system being developed will be safe.
Conversely, if some of the recommendations in this document are not followed,
it does not mean that the system being developed will be unsafe.

1-2

2

Block Considerations

• “cgsl_0101: Zero-based indexing” on page 2-2

• “cgsl_0102: Evenly spaced breakpoints in lookup tables” on page 2-4

• “cgsl_0103: Precalculated signals and parameters” on page 2-5

2 Block Considerations

cgsl_0101: Zero-based indexing

ID: Title cgsl_0101: Zero-based indexing

Use zero-based indexing for blocks that require indexing. To set up
zero-based indexing, do one of the following:

A Select block parameter Use zero-based indexing for the following
blocks:

• Index Vector

• Multiport Switch

Description

B Set block parameter Index mode to Zero-based for the following
blocks:

• Assignment

• Selector

• For Iterator

Notes The C language uses zero-based indexing.

A, B Use zero-based indexing for compatibility with integrated C code.Rationale

A, B Results in more efficient C code execution. One-based indexing
requires a subtraction operation in generated code.

See Also “hisl_0021: Consistent vector indexing method”

Last Changed R2010b

Recommended

void ZeroIndex(void)
{

Y.Out5 = 3.0 * ZeroIndexArray[IndexSel_Zero];
}

Examples

2-2

cgsl_0101: Zero-based indexing

ID: Title cgsl_0101: Zero-based indexing

Not Recommended

void OneIndex(void)
{

Y.Out1 = OneIndexArray[IndexSel_One - 1] * 6.3;
}

2-3

2 Block Considerations

cgsl_0102: Evenly spaced breakpoints in lookup tables

ID: Title cgsl_0102: Evenly spaced breakpoints in lookup tables

When you use Lookup Table and Prelookup blocks,

A With non-fixed-point data types, use evenly spaced data breakpoints
for the input axis

Description

B With fixed-point data types, use power of two spaced breakpoints for
the input axis

Notes Evenly-spaced breakpoints can prevent generated code from including
division operations, resulting in faster execution.

A Improve ROM usage and execution speed.Rationale

B Improve execution speed.

When compared to unevenly-spaced data, power-of-two data can

• Increase data RAM usage if you require a finer step size

• Reduce accuracy if you use a coarser step size

Compared to an evenly-spaced data set, there should be minimal cost
in memory or accuracy.

Model Advisor
Checks

Embedded Coder > “Identify questionable fixed-point operations”

See Also • in the Simulink® Coder™ documentation

• “Formulation of Evenly Spaced Breakpoints” in the Simulink
documentation

Last Changed R2010b

2-4

cgsl_0103: Precalculated signals and parameters

cgsl_0103: Precalculated signals and parameters

ID: Title cgisl_0103: Precalculated signals and parameters

Precalculate invariant parameters and signals by doing one of
the following:
A Manually precalculate the values

Description

B Enable the following model optimization parameters:
• Optimization > Simulation and code
generation > Inline parameters

• Optimization > Code
generation > Signals > Inline invariant signals

Notes Precalculating variables can reduce local and global memory
usage and improve execution speed. If you select Inline
parameters and Inline invariant signals, the code generator
minimizes the number of run-time calculations by maximizing
the number calculations completed before runtime. In some
cases, this can lead to a reduction in the number of parameters
stored. However, the algorithms the code generator uses have
limitations. In some cases, the code is more compact if you
calculate the values outside of the Simulink environment. This
can improve model efficiency, but can reduce model readability.

Rationale A, B Precalculate data, outside of the Simulink environment,
to reduce memory requirements of a system and
improve run-time execution.

Last Changed R2010b

Examples In the following model, all four paths are mathematically
equivalent. However, due to algorithm limitations, the number
of run-time calculations for the paths differs.

2-5

2 Block Considerations

ID: Title cgisl_0103: Precalculated signals and parameters

Path_1 = InputSignal * -3.0 * 3.0;

/* Product: '<Root>/Product4' incorporates:
* Inport: '<Root>/In1'
*/

Path_2 = InputSignal * -9.0;

/* Product: '<Root>/Product2' incorporates:
* Constant: '<Root>/Constant2'
* Inport: '<Root>/In1'
*/

Path_3 = -9.0 * InputSignal;

/* Product: '<Root>/Product5' incorporates:
* Constant: '<Root>/Constant2'
* Inport: '<Root>/In1'
*/

2-6

cgsl_0103: Precalculated signals and parameters

ID: Title cgisl_0103: Precalculated signals and parameters

Path_4 = -3.0 * InputSignal * 3.0;

/* Product: '<Root>/Product6' incorporates:
* Constant: '<Root>/Constant3'
* Inport: '<Root>/In1'
*/

Pre_Calc_1 = -9.0 * InputSignal;

To maximize automatic precalculation, add signals at the end
of the set of equations.

Inlining data reduces the ability to tune model parameters.
You should define parameters that require calibration to
allow calibration. For more information, see “Parameter
Considerations” in the Simulink Coder documentation.

2-7

2 Block Considerations

2-8

3

Modeling Pattern
Considerations

• “cgsl_0201: Eliminate redundant state blocks” on page 3-2

• “cgsl_0202: Usage of For, While, and For Each subsystems with vector
signals” on page 3-8

• “cgsl_0204: Vector and bus signals crossing into atomic subsystems” on
page 3-10

• “cgsl_0205: Signal handling for multirate models” on page 3-14

• “cgsl_0206: Data integrity and determinism in multitasking models” on
page 3-16

3 Modeling Pattern Considerations

cgsl_0201: Eliminate redundant state blocks

ID: Title cgsl_0201: Eliminate redundant state blocks

When preparing a model for code generation,Description

A Remove redundant Unit Delay and Memory blocks.

Rationale A Redundant Unit Delay and Memory blocks use additional global
memory. Removing the redundancies from a model reduces memory
usage without impacting model behavior.

Last Changed R2010b

Example

Recommended: Consolidated Unit Delays

void Reduced(void)

{

ConsolidatedState_2 = Matrix_UD_Test - (Cal_1 * DWork.UD_3_DSTATE + Cal_2 *

DWork.UD_3_DSTATE);

DWork.UD_3_DSTATE = ConsolidatedState_2;

}

3-2

cgsl_0201: Eliminate redundant state blocks

ID: Title cgsl_0201: Eliminate redundant state blocks

Not Recommended: Redundant Unit Delays

void Redundent(void)

{

RedundantState = (Matrix_UD_Test - Cal_2 * DWork.UD_1B_DSTATE) - Cal_1 *

DWork.UD_1A_DSTATE;

DWork.UD_1B_DSTATE = RedundantState;

DWork.UD_1A_DSTATE = RedundantState;

}

Unit Delay and Memory blocks exhibit commutative and distributive algebraic
properties. When the blocks are part of an equation with one driving signal,
you can move the Unit Delay and Memory blocks to any position in the equation
without changing the result.

For the top path in the preceding example, the equations for the blocks are:

1 Out_1(t) = UD_1(t)

2 UD_1(t) = In_1(t-1) * Cal_1

3-3

3 Modeling Pattern Considerations

ID: Title cgsl_0201: Eliminate redundant state blocks

3 Out_1(t) = In_1(t-1) * Cal_1

For the bottom path, the equations are:

1 Out_2(t) = UD_2(t) * Cal_1

2 UD_2(t) = In_2(t-1)

3 Out_2(t) = In_2(t-1) * Cal_1

In contrast, if you add a secondary signal to the equations, the location of
the Unit Delay block affects the result. As the following example shows, the
location of the Unit Delay block affects the results due the skewing of the time
sample between the top and bottom paths.

In cases with a single source and multiple destinations, the comparison is more
complex. For example, in the following model, you can refactor the two Unit
Delay blocks into a single unit delay.

3-4

cgsl_0201: Eliminate redundant state blocks

ID: Title cgsl_0201: Eliminate redundant state blocks

From a black box perspective, the two models are equivalent. However, from a
memory and computation perspective, differences exist between the two models.

{
real_T rtb_Gain4;
rtb_Gain4 = Cal_1 * Redundant;
Y.Redundant_Gain = Cal_2 * rtb_Gain4;
Y.Redundant_Int = DWork.Int_A;
Y.Redundant_Int_UD = DWork.UD_A;
Y.Redundant_Gain_UD = DWork.UD_B;
DWork.Int_A = 0.01 * rtb_Gain4 + DWork.Int_A;
DWork.UD_A = Y.Redundant_Int;
DWork.UD_B = Y.Redundant_Gain;

}

{
real_T rtb_Gain1;
real_T rtb_UD_C;
rtb_Gain1 = Cal_1 * Reduced;
rtb_UD_C = DWork.UD_C;
Y.Reduced_Gain_UD = Cal_2 * DWork.UD_C;
Y.Reduced_Gain = Cal_2 * rtb_Gain1;
Y.Reduced_Int = DWork.Int_B;
Y.Reduced_Int_UD = DWork.Int_C;
DWork.UD_C = rtb_Gain1;

3-5

3 Modeling Pattern Considerations

ID: Title cgsl_0201: Eliminate redundant state blocks

DWork.Int_B = 0.01 * rtb_Gain1 + DWork.Int_B;
DWork.Int_C = 0.01 * rtb_UD_C + DWork.Int_C;

}

{
real_T rtb_Gain4_f;
real_T rtb_Int_D;
rtb_Gain4_f = Cal_1 * U.Input;
rtb_Int_D = DWork.Int_D;
Y.R_Int_Out = DWork.UD_D;
Y.R_Gain_Out = DWork.UD_E;
DWork.Int_D = 0.01 * rtb_Gain4_f + DWork.Int_D;
DWork.UD_D = rtb_Int_D;
DWork.UD_E = Cal_2 * rtb_Gain4_f;

}

In this case, the original model is more efficient. In the first code example, there
are three bits of global data, two from the Unit Delay blocks (DWork.UD_A and
DWork.UD_B) and one from the discreate time integrator (DWork.Int_A). The
second code example shows a reduction to one global variable generated by
the unit delays (Dwork.UD_C), but there are two global variables due to the
redundant Discreate Time Integrator blocks (DWork.Int_B and DWork.Int_C).
The Discreate Time Integrator block path introduces an additional local
variable (rtb_UD_C) and two additional computations.

By contrast, the refactored model (second) below is more efficient.

3-6

cgsl_0201: Eliminate redundant state blocks

ID: Title cgsl_0201: Eliminate redundant state blocks

{
real_T rtb_Gain4_f:
real_T rtb_Int_D;
rtb_Gain4_f = Cal_1 * U.Input;
rtb_Int_D = DWork.Int_D;
Y.R_Int_Out = DWork.UD_D;
Y.R_Gain_Out = DWork.UD_E;
DWork.Int_D = 0.01 * rtb_Gain4_f + DWork.Int_D;
DWork.UD_D = rtb_Int_D;
DWork.UD_E = Cal_2 * rtb_Gain4_f;

}

{
real_T rtb_UD_F;
rtb_UD_F = DWork.UD_F;
Y.Gain_Out = Cal_2 * DWork.UD_F;
Y.Int_Out = DWork.Int_E;
DWork.UD_F = Cal_1 * U.Input;
DWork.Int_E = 0.01 * rtb_UD_F + DWork.Int_E;

}

The code for the refactored model is more efficient because no branches from
the root signal have a redundant unit delay.

3-7

3 Modeling Pattern Considerations

cgsl_0202: Usage of For, While, and For Each subsystems
with vector signals

ID: Title cgsl_0202: Usage of For, While, and For Each subsystems with
vector signals

When developing a model for code generation,

A Use For, While, and For Each subsystems for calculations that
require iterative behavior or operate on a subset (frame) of data.

Description

B Avoid using For, While, or For Each subsystems for basic vector
operations.

Rationale A, B Avoid redundant loops.

See Also • “Loop unrolling threshold” in the Simulink documentation

• MathWorks Automotive Advisor Board guideline db_0117: Simulink
patterns for vector signals

Last Changed R2010b

The recommended method for preceding calculation is to place the Gain
block outside the For Subsystem. If the calculations are required as part of
a larger algorithm, you can avoid the nesting of for loops by using Index
Vector and Assignment blocks.

Recommended

for (s1_iter = 0; s1_iter < 10; s1_iter++) {
RecommendedOut[s1_iter] = 2.3 * vectorInput[s1_iter];

}

Examples

3-8

cgsl_0202: Usage of For, While, and For Each subsystems with vector signals

ID: Title cgsl_0202: Usage of For, While, and For Each subsystems with
vector signals

A common mistake is to embed basic vector operations in a For, While, or
For Each subsystem. The following example includes a simple vector gain
inside a For subsystem, which results in unnecessary nested for loops.

Not Recommended

for (s1_iter = 0; s1_iter < 10; s1_iter++) {
for (i = 0; i < 10; i++) {

NotRecommendedOut[i] = 2.3 * vectorInput[i];
}

}

3-9

3 Modeling Pattern Considerations

cgsl_0204: Vector and bus signals crossing into atomic
subsystems

ID: Title cgsl_0204: Vector and bus signals crossing into atomic subsystems

When working with a bus or vector signal, where only part of the signal is
used in an Atomic subsystem,

Description

A Use the following tables applies to signals with local and global
scope. It can be used to determine which parts of the signal to select
to minimize memory usage: Note Virtual buses do not support
global data.Function

Signals selected
outside subsystem
results in...

Signal selected
inside subsystem
results in...

Virtual Bus No data copies No data copies

Non-Virtual Bus A copy of all signals
are placed in the
global Block I/O
structure

No data copies

Vector No data copies No data copies

Reusable Function

Signals selected
outside subsystem
results in

Signal selected
inside subsystem
results in

Virtual Bus No data copies, only
the selected elements
are passed into the
function

No data copies,
only the selected
elements are passed
into the function

Non-Virtual Bus A copy of the full
bus is placed into
the global Block I/O
structure, only the
elements used in the
function are passed.

No data copies; the
full bus is passed in
by reference.

3-10

cgsl_0204: Vector and bus signals crossing into atomic subsystems

ID: Title cgsl_0204: Vector and bus signals crossing into atomic subsystems

Vector No data copies;
only the vector
elements used in the
subsystem are passed
into the function.

No data copies;
only the vector
elements used in
the subsystem are
passed into the
function.

Model Reference

Signals selected
outside subsystem
results in

Signal selected
inside the
subsystem results
in

Virtual Bus No data copies Full bus copied; full
bus passed into the
function.

Non-Virtual Bus Full bus copied; full
bus passed into the
function.

No data copies; full
bus passed into the
function

Vector No data copies;
selected only the
vector elements used
in the subsystem
are passed into the
function.

No data copies; full
vector passed by
reference

If the subsystem is set to Inline, no data copies occur.

Rationale A Minimize ROM requirements.

3-11

3 Modeling Pattern Considerations

ID: Title cgsl_0204: Vector and bus signals crossing into atomic subsystems

Last Changed R2011a

Examples Example of selecting signals inside and outside of an atomic
subsystem

Signals selected inside the subsystem for a NonVirtual bus with
the subsystem set to atomic and Function

3-12

cgsl_0204: Vector and bus signals crossing into atomic subsystems

ID: Title cgsl_0204: Vector and bus signals crossing into atomic subsystems

In this example the full bus is copied to the global variable funcExample
even though only 3 of the signals from the bus are used. Reusable
function example

• Line 53 corresponds to a reusable function with a virtual bus selection
inside of the atomic subsystem. Only the signals used by the function
are passed into the function

• Lines 54 through 59 show a nonvirtual bus with signals selected outside
of the atomic subsystem. Copies of the data are placed into global storage
rtb_*, again only the data used by the function is passed

• Line 60 shows a nonvirtual bus with data selected inside of the atomic
subsystem. The full bus is passed into the subsystem

• Line 61 shows the vector selected inside the atomic subsystem case. Only
the signals used inside of the subsystem are passed into the function.

3-13

3 Modeling Pattern Considerations

cgsl_0205: Signal handling for multirate models

ID: Title cgsl_0205: Signal handling for multirate models

For multirate models, handle the change in operation rate in one of two
ways:

A At the destination block, Insert a Rate Transition.

Description

B Set the parameter Solver > Automatically handle rate
transition for data transfer to either Always or Whenever
possible.

Rationale A,B Following this guideline ensures the proper handling of data
operating at different rates.

Note Setting the parameter Solver > Automatically handle rate transition
for data transfer with the setting to Whenever possible requires
inserting a Rate Transition block in locations indicated by Simulink.

Setting the parameter Solver > Automatically handle rate transition
for data transfer to Always allows Simulink to automatically handle
all rate transitions by inserting a Rate Transition block. The following
exceptions apply:

• The insertion of a Rate Transition block requires rewiring the block
diagram.

• Multiple Rate Transition blocks are required:

- The blocks’ sample times are not integer multiples of each other

- The blocks use different sample time offsets

- One of the rates is asynchronous

• An inserted Rate Transition block can have multiple valid configurations.

For these cases, manually insert a Rate Transition block or blocks.

MathWorks does not recommend using Unit Delay and Zero Order Hold
blocks for handling rate transitions.

3-14

cgsl_0205: Signal handling for multirate models

ID: Title cgsl_0205: Signal handling for multirate models

Last Changed R2011a

Examples Incorrect:

In this example, the Rate Transition block is inserted at the source, not
at the destination of the signal. The model fails to update because the
two destination blocks (Gain and Sum) run at different rates. To fix this
error, insert Rate Transition blocks at the signal destinations and remove
Rate Transition blocks from the signal sources. Failure to remove the Rate
Transition blocks is a common modeling pattern that might result in errors
and inefficient code.

Correct:

In this example, the rate transition is inserted at the destination of the
signal.

3-15

3 Modeling Pattern Considerations

cgsl_0206: Data integrity and determinism in multitasking
models

ID: Title cgsl_0206: Data integrity and determinism in multitasking models

For multitasking models that are deployed with a preemptive (interruptible)
operating system, protect the integrity of selected signals by doing one
of the following:

A Select the Rate Transition block parameter Ensure data integrity
during data transfer.

B For Inport blocks in Function Called subsystems, select the block
parameter Latch input for feedback signals of function-call
subsystem outputs.

To protect selected signal determinism, do one of the following:

C Select the Rate Transition block parameter Ensure deterministic
data transfer (maximum delay).

Description

D • Select the model parameter Solver > Automatically handle
rate transition for data transfer.

• Set the model parameter Solver > Deterministic data transfer
to either Whenever possible or Always.

Rationale A,B,C,DFollowing this guideline protects data against possible corruption of
preemptive (interruptible) operating systems.

Note Multitasking systems with a non-preemptive operating system do not
require data integrity or determinism protection. In this case, always
clear the parameters Ensure data integrity during data transfer and
Ensure deterministic data transfer.

Ensuring data integrity and determinism requires additional memory and
execution time. To reduce this additional expense, evaluate all signals to
determine the level of protection that they require.

Prerequisites cgsl_0205:Signal handling for multirate models

See Also • Rate Transition

• “Data Transfer Problems”

Last Changed R2011a

3-16

4

Configuration Parameter
Considerations

• “cgsl_0301: Prioritization of code generation objectives for code efficiency”
on page 4-2

• “cgsl_0302: Diagnostic settings for multirate and multitasking models”
on page 4-3

4 Configuration Parameter Considerations

cgsl_0301: Prioritization of code generation objectives
for code efficiency

ID: Title cgsl_0301: Prioritization of code generation objectives for code
efficiency

Prioritize code generation objectives for code efficiency by using the Code
Generation Advisor.

A Assign priorities to code (ROM, RAM, and Execution efficiency)
efficiency objectives.

B Select the relative order of ROM, RAM, and Execution efficiency
based on application requirements.

Description

C Configure the Code Generation Advisor to run before generating code
by setting Check model before generating code on the Code
Generation pane of the Configuration Parameters dialog box to On
(proceed with warnings) or On (stop for warnings).

Notes A model’s configuration parameters provide control over many aspects of
generated code. The prioritization of objectives specifies how configuration
parameters are set when conflicts between objectives occur.

Prioritizing code efficiency objectives above safety objectives may remove
initialization or run-time protection code (for example, saturation range
checking for signals out of representable range). The resulting parameter
configuration should be reviewed to ensure that all safety requirements
are met. For more information about objective tradeoffs for each model
parameter, see “Mapping Application Objectives to Model Configuration
Parameters” in the Embedded Coder™ documentation.

Rationale A,
B, C

By using the Code Generation Advisor, you ensure that the selection
of configuration parameters conforms to desired objectives and are
consistently enforced.

See also • “Set Objectives — Code Generation Advisor Dialog Box” in the Simulink
Coder documentation

• “Setting Up Configuration Sets” in the Simulink documentation

• “hisl_0055: Prioritization of code generation objectives for high-integrity
systems”

Last Changed R2010b

4-2

cgsl_0302: Diagnostic settings for multirate and multitasking models

cgsl_0302: Diagnostic settings for multirate and
multitasking models

ID: Title cgsl_0302: Diagnostic settings for multirate and multitasking
models

Description For multirate models using either single tasking or multitasking, set to
either warning or error the following diagnostics:

• Diagnostics > Sample Time > Single task rate transition

• Diagnostics > Sample Time > Enforce sample time specified by
Signal Specification blocks

• Diagnostics > Data Validity > Merge Block > Detect multiple
driving blocks executing at the same time step

For multitasking models, set to either warning or error the following
diagnostics:

• Diagnostics > Sample Time > Multitask task rate transition

• Diagnostics > Sample Time > Multitask conditionally executed
subsystem

• Diagnostics > Sample Time >Tasks with equal priority

If the model contains Data Store Memory blocks, set to either Enable all
as warnings or Enable all as errors the following diagnostics:

• Diagnostics > Data Validity > Data Store Memory Block > Detect
read before write

• Diagnostics > Data Validity > Data Store Memory Block > Detect
write after read

• Diagnostics > Data Validity > Data Store Memory Block > Detect
write after write

• Diagnostics > Data Validity > Data Store Memory Block >
Multitask data store

Rationale Setting the diagnostics improves run-time detection of rate and tasking
errors.

4-3

4 Configuration Parameter Considerations

ID: Title cgsl_0302: Diagnostic settings for multirate and multitasking
models

See Also • “Diagnostics Pane: Solver”

• “hisl_0013: Usage of data store blocks”

Last Changed 2011a

4-4

	toc
	Introduction
	Motivation

	Block Considerations
	cgsl_0101: Zero-based indexing
	cgsl_0102: Evenly spaced breakpoints in lookup tables
	cgsl_0103: Precalculated signals and parameters

	Modeling Pattern Considerations
	cgsl_0201: Eliminate redundant state blocks
	cgsl_0202: Usage of For, While, and For Each subsystems with vec
	cgsl_0204: Vector and bus signals crossing into atomic subsystem
	cgsl_0205: Signal handling for multirate models
	cgsl_0206: Data integrity and determinism in multitasking models

	Configuration Parameter Considerations
	cgsl_0301: Prioritization of code generation objectives for code
	cgsl_0302: Diagnostic settings for multirate and multitasking mo

	tables
	1Out_1(t) = UD_1(t)
	1Out_2(t) = UD_2(t) * Cal_1

